数学是他自己的道路。
不管如何,🟔🜻哪怕是实现🝏了可🟡🞬控核聚变技术,徐川也不准备放弃数学这一领域。
相反,在接下来的几年的时间中,他会将更多的精力🄿放在数学上。
别看他⚹🖘已经解决了两个千禧年难题,但数学的广阔,他仍然还有很🂱多尚未踏足和需要学习的领域。
至于航天发动🂂机,毫无疑问,这是为航天技💚💙💒术的突破而准备的。
在可🃪🚧🕱控核聚变技术实💮🕍🈕现后,迈向天空的脚步是必须的。
但就现在的情况来看,无论是华国也好,还是🐃☱米国也好,亦或者欧盟与其他国家,在航天🏭🝘技术上,并没有什么太大的进展。
要说航天的巅峰,甚至还能归属到上个🗫世纪那场著名的♾🎃‘冷战’上面去。
在那个动乱但又充满了竞争的年代,航天迎来了人类历史上最为辉煌的时🌓⚐🐣刻。
运载火箭😘🁦、🟔🜻无人升空、载人登月、⚈航天飞机、土星5号超重型运载火箭一系列的奇迹都是在那个时候创造出来的。
但如今已经过去了几十年,各国的航天技术依旧是在上面敲敲打打,补一些补丁。不说前进,甚至🌊♁🅞搞不好还有可能倒退了。
早在几十年前,苏米都曾实现🗅🙑过载人登月,然而几🏨🜨十年过去,载人登月已经不在各国的计划和安排中了。
当然,这也和航天发动机技术迟迟未能🗫有所突破有关系。
在很多科幻或者科幻电影中,飞🏲🞀行器总能为星际旅行的全程提供动力。
但在现⚹🖘实中,火箭推进器的发动机技术,根本无法🏨🜨实现这一点。
相对于裸露在外的推进剂储箱,化学火箭的💚💙💒发动机看上去很小,但它的胃口很大。
“吃得多,干活的效率却不高。”
传统的化石燃料发动💮🕍🈕机需要吞噬掉的海量能源,却只在♾🎃提供短期动力方面有效——储存的燃料很快用完,推进器马上被当成垃圾扔掉。
化学火箭的大部分燃料被用来摆脱地球引力,剩余的一♾🎃点则被用来推动火箭的“太空滑行”。火箭飞🌺🄇🞪往目的地,⚠💷🖢仅仅是依靠惯性。
对于星际飞行🂂来说,这种引擎显然力不从心。
就🐘⛯🝾拿大名鼎鼎🂂的“土星5号运载火箭”来说。
它是米国研发🂂出来的超重型运🗅🙑载火箭,号称史上最强🄿火箭系统。
然🐘⛯🝾而高达110.6米、直径10米、推🕌☰力高达3408吨的💘💊🐋它,却仅仅能将118吨物品送入近地轨道,如果是要送往月球轨道的话,载重会急剧缩小到45吨。
其原因在于火箭产生的近三千五百吨推力中,很大一部分被用来“拖”起火箭自身和200🞐📔0多吨燃料。
它的“比冲量”并不高🝏,只有300多秒,表明了它的推🏢进效率的低下。🌓⚐🐣