数学是他自己的道路。
不管如何,哪怕是实现了可控核聚变技术,徐川也💎🐱🃩不准备放弃数学这一领域。
相反,在接下来🅴🔊的几年的时间中,他会将更多的精力放在数学上🂎🍦。
别看他已经解决了两个千禧年难题,但数学的广阔,他仍然还有很多尚未踏🕁🆪足和需要学习的领域。
至于航天发动机,毫无疑问,🍠这是🁄🃍为航天技术的突破而准备的。🂎🍦
在可控核聚变技🅴🔊术实现后,迈向天空的脚步是必须的。
但就现在的情况来看,无论是华国也好,还是米国也好,亦或者欧盟与其他国家,在航天技术上,并😔🁂没有什么太大的进展🞑📟🜇。
要说航天的🌳🃉🕻巅峰,甚至还能🗨归属到上个世纪那场著💎🐱🃩名的‘冷战’上面去。
在那个动乱但又充满了竞争的年代,航天迎🐋来了人类历史上最为辉煌的时刻。
运载火箭、无人升空、载🚊👩人登月、航天飞机、土星5号超重型运载火箭一系列的奇迹都是在那个时候创造出来的。
但如今已经过去了几十年,各国的航天技术依旧是💎🐱🃩在上面敲敲打打,补一些补丁。不说前进,甚至搞不好还有可能倒退了。
早在几十年前,苏米都曾实现🍠过载人登月,然而几💎🐱🃩十年过去,载人登月已经不在各国的计划和安排中了。
当然,这也和航天发动机技术迟迟🁄🃍未能有所突破有关系。
在很多科幻或者科幻🅪🇬电影中,飞行🁄🃍🁄🃍器总能为星际旅行的全程提供动力。
但在现实中🌳🃉🕻,火箭推进🙊🈩器的发动机技🜗🂎术,根本无法实现这一点。
相对于裸露在🎰外的推进剂储箱,化🁄🃍学火箭的发动机看上去很小,但它的胃口🕁🆪很大。
“吃得多,干活的效率却不高。”
传统的化石燃料发动机需要吞噬掉的海量能源,却只在提供短期动力方面有效——储存的燃料很快用完,推🃯🛓🛼进器马上被当成垃圾扔掉。
化学火箭的大部分燃料被用🗨来摆脱地球引力,剩余的一点则被用来推动火箭的“太空滑行”。火箭飞往目👳的地🐊,仅仅是依靠惯性。
对于星际飞行来说,这种引擎显然力不👻从🂁心。
就拿大名鼎鼎的“土星5号运载🀶🁖🅴火箭”来说。
它是米国♁🅘研发出来的超重型运载火箭,号称史上最强火箭⚟💩系统。
然而高达110.6米、直径10米、推力高达3408吨的它,却仅仅能🕁🆪将118吨物品送入近地轨道,如果是要送往月球轨道的话,载重会急👬剧缩小到45吨🅏🅦。
其原因在于火箭产生的🙊🈩近三千五百吨推力中🐋,很大一部分被用来“拖🏿”起火箭自身和2000多吨燃料。
它的🙥🌢🀰“比冲量”并不高,只有300多👻秒,表明了它的🎞💑👈推进效率的低下。