看着手中写满算式的稿纸,徐川眼睛在脑海中过了一遍整个求解的过程🁂,细细的体会着🏀🗀。
良好的📞🛺记忆力让他能很轻松的完成这种事情,但🖌👉对于这次能如此轻松的对‘钝头物体超音速扰流问题’做出一份阶段性的成果仍然令他都有些怀疑真实🚾🙂🇧性。
毕竟,这是一个世界级的难题。
哪怕是他先后已经解决掉了三个千禧年难题🐺,也不敢说自己在数学🄿🃓上就无敌了,就能解决所🎿🖵🖿有的问题了。
人外有人山外有山,在数学上,没有最难的,只有🌰🂫更🏬🝏难的。
哪怕是如今被数学界公认为七大千禧年难题,也并非整个数学领域中最难以解决的问⚈🏗🚏题。
千禧年难题之所以🄩⛹是千禧年难题,是因为克雷数学研究所当时在进行选定的时候,通过数学界众多的大牛共同讨论,认为这七个难题是这个世🔘🀼🂅纪能够解决的问题。
而在此之上,还有一些被数学界几🐄乎公认为这个世纪无法解决的猜想和难题。
如ABC猜想、标准猜想、代数与几何的统一🞁👋等等🌰🂫。
这些难题有些建立于千禧年难题的解决,比如代数与几何的统一目前被认为建立在黎曼猜想的解决上;有🁏些则是更复杂的问题,如ABC猜想。
ABC猜想的名气并不大,或许在公众知名度方面它尚处于🚿“入门”阶段,以难🏤🜆度和地位而论却绝不是入门级别的。
很多数学家一致认为它的难度足以与黎曼猜想媲美,甚至可能会更高。🁂
因为其本质将整数的加法性质(比如A+B=C)和乘法性🚿质(比如素数概念——因为它是由乘法性质所定义的)交互在了一起。
而这🅥两种本身很简单的🐌⚄性质交互所能产生的复杂性是🏬🝏近乎无穷的。
数论中许多表述极为浅显,却极难证明的猜想,比如哥德巴赫猜🗇🙞想、孪生素数猜想、费马猜想等都具有这种加法性质和乘法性质相交互的特性。
此🏃🗜🜝外,数论中一个很重要的分支——旨在研究整系数代数方程的整数解的所谓丢番图分析—更是整个分支都具有这一特性。
如果ABC猜想被解决,古👱🌬老🐝的数论都将因此焕发出全新的生命。🄿🃓
因此,徐川从来都不认为自己在数学上的🝍成就已经站🏬🝏到了巅🚿峰,哪怕是他已经解决了三个千禧年难题。
在世人眼中,他已经站在了金字塔顶尖上;🐺但在他自己眼中,如今的他依旧只是遨游在数学汪洋中的一片孤舟而已。
未来太长太远,谁也看不到尽头。
细细的的体味了😓🁀🂮一番解决‘钝头物体超音速扰流问题’过程中的感受,徐川睁开眼,长舒了口气。🔚🁉
似乎,在过去这大半年的时间中没有深入思考🞁👋与研究数学,并没有🄿🃓让他在数学领域上的能力退步。
甚至,他隐隐感觉这一年来的时间🐄,在数学上还有了进一步沉淀。
一🏃🗜🜝种很奇妙的感觉,徐川从未想过这一年🝍以来他从未深入思考过多少数学难题,却🂀能在数学上更进一步。
盯着稿纸上的算式,他眼眸中流露出来一丝意犹未尽的兴趣。